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Clinical research does not happen in a vacuum. The critical 
care community has been focused on treating coronavirus di-
sease 2019, the largest global outbreak of respiratory disease 
in over a century. The pulmonary effects of severe acute res-
piratory syndrome coronavirus 2 on the lung are frequently 
manifested as severe ARDS. Knowing which patients are pre-
dicted to respond to conventional ARDS management would 
be a valuable asset to the bedside clinicians facing incredibly 
difficult therapeutic choices. This trial is a possible first step to 
that knowledge.
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Not All Databases Are Created Equal*

It is not quite clear when the threshold was crossed, but we 
now reside in the age of Artificial Intelligence (AI) in Medi-
cine (AIM). The term “AI” was first used in the 1950s to de-

scribe computers that might convincingly mimic the thought 
processes and behaviors of humans (1). Although it has taken 
more than 6 decades, data-driven algorithms are now embed-
ded in the electronic health records (EHRs) we employ daily, 
not to mention in e-commerce, automobiles, smart assistants, 

social media monitoring, manufacturing, and natural language 
processing. AIM is increasingly developed using healthcare “big 
data”; the now voluminous stream of digital information from 
the EHR, laboratory systems, smartphones, wearable devices, 
claims-based data, genomic sequencing, research studies, and 
other sources (2). Insurers, purchasing organizations, govern-
mental agencies, EHR vendors, and others have all assembled 
large databases; those administrative databases useful for crit-
ical care research have been well-summarized elsewhere (3).

Central to the acceptance and adoption of AIM is trust in 
decision-making algorithms and the data sources that were 
mined to create those tools (4). The computer science term 
“Garbage In, Garbage Out,” reflects the concept that AI will 
efficiently process whatever data are provided, but is agnostic 
to the quality of that data. Inadequate attention to the type and 
sources of input information will inevitably result in bad (i.e., 
garbage) output, often in a manner that may be hard to rec-
ognize or reconcile. Thus, an emerging frontier of medical re-
search encompasses thoughtful assessment of AIM algorithms, 
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challenging their evidence-based assumptions, and investigat-
ing the quality of the databases from which they are derived.

The electronic ICU Collaborative Research Database 
(eICU-CRD) (5) is a publicly available repository with detailed 
data generated by participants in the Philips Healthcare eICU 
program. In this issue of Critical Care Medicine, O’Halloran  
et al (6) provide a deep dive into the characteristics of the eICU-
CRD. Their descriptive analysis examines data from 139,367 
patients admitted to one of 335 participating ICUs between 
2014 and 2015. Notably, most encounters were from small and 
medium-sized hospitals, and patients were managed primarily 
by nonintensivists with telemedicine backup. Observed ICU 
mortality was 5.4%, versus an Acute Physiology and Chronic 
Health Evaluation (APACHE) IVb predicted estimate of 2.0%. 
In-hospital mortality was 9%. The percentage of patients iden-
tified as intubated (15–24%), receiving mechanical ventilation 
(20–33%), or hemodialysis (3–5%) depended on the query 
method used. Although most vital sign data fell into realistic 
ranges, implausible results were occasionally noted. Some of 
these (temperatures charted in Fahrenheit rather than Celsius) 
are easily identified; others (such as elevated central venous 
pressure) may be more elusive. Data entered manually was bet-
ter curated, a finding that resonates with my own experience. 
Following an EHR software upgrade, my team spent several 
months trying to identify suddenly higher ICU standardized 
mortality ratio (SMR) values. It was our experienced data col-
lector, temporarily reassigned to manually collect parallel data, 
who finally identified that automated blood pressure values 
were correctly collected when the nurses chose “ART” (arterial) 
to label the arterial trace, but not when they chose the alter-
nate “ABP” (arterial blood pressure) label. As a result, missing 
values in affected patients defaulted to “normal,” blood pres-
sure abnormalities were not scored, and thus the falsely low 
expected mortality translated to an elevated SMR.

Subtle errors can be devilishly difficult to identify, and the 
process begins with vetting automatically collected data and 
comparing aggregated median, mean, and sd values to the 
experience of others. Overall, data from the eICU-CRD was 
mostly complete and plausible, but relatively low ICU and 
hospital mortality and length of stay raise the issue of how 
this database of small and medium-sized facilities compares 
with larger ICUs with higher patient acuity. While critical care 
units have been compared using American Hospital Associa-
tion data (7), specific information on high-acuity units is hard 
to find. Comparison could be drawn to the Society of Critical 
Care Medicine’s own Project IMPACT database which had a 
similar number of patients (124,855) at 135 ICUs in 98 hos-
pitals between 2001 and 2004 (8). Project IMPACT was a self-
selected consortium of largely urban (49.5%) hospitals where 
patients were directly managed 51% of the time by critical care 
specialists, with discretionary or mandatory critical care con-
sultation in 47%. A critical care physician was unavailable only 
2% of the time, and ICU telemedicine was then uncommon. 
Twenty-three percent of the Project IMPACT hospitals had ac-
credited critical care fellowship programs, and an additional 
18% were teaching hospitals for a medical school. Only 4% of 

Project IMPACT units had less than 10 ICU beds, and nearly 
a quarter had greater than or equal to 20 beds. As might be 
expected, the Project IMPACT cohort was high acuity, with 
observed hospital mortality of 13.8%, representing a SMR 
of 1.018 (0.996–1.040). Other characteristics, although were 
closer to those observed in the eICU study—for example, 27% 
of Project IMPACT patients received mechanical ventilation. 
Unfortunately, detailed comparisons are limited by different 
definitions, use of mean versus median, and changes in critical 
care practice over the intervening period.

The APACHE database is another source of descriptive data. 
Two years’ worth of APACHE data, containing 131,618 ICU 
admissions at 104 ICUs during 2002 and 2003, was used to de-
velop APACHE IV (9). In that model’s development set, hospital 
mortality was 13.6% and 35% of patients were ventilated on ICU 
day 1. Aggregate median observed ICU length of stay was 1.98 
days, longer than the 1.57 days reported by the eICU database.

Differences in patient and ICU characteristics could have 
important implications when benchmarking mortality and 
length of stay. Although APACHE and MPM display good 
overall performance, calibration can diverge from the line of 
identity at very low or very high scores. Missing data elements 
(albumin, bilirubin, and pH) will not be scored, and defaulting 
missing data to normal will predict lower mortality. Further-
more, SMR is usually reported for hospital, not ICU mortality. 
Thus, it is difficult to say what the high observed to expected 
mortality ratio in the eICU study might represent. Further 
study is needed to confirm that existing benchmarking tools 
accurately predict risk in smaller hospitals where care is pro-
vided by nonintensivists with telemedicine backup.

All men are created equal, but all databases are not. Retro-
spective analyses of large databases collected concurrently with 
care allows researchers to develop insights that might other-
wise be missed due to the prohibitive cost of prospective, ran-
domized controlled studies. But, as the practice of medicine 
comes to increasingly rely on “big data” for research studies 
and software development, it is vitally important to fully un-
derstand the data sources on which new care algorithms might 
be based. As the authors acknowledge, caution is warranted in 
extrapolating findings from the eICU-CRD to larger ICUs with 
higher acuity. I would contend that the reverse could also be 
true. This article provides a valuable précis on the strengths 
and potential weaknesses of one of many available sources of 
“big data”; our field could use additional similar studies. Un-
derstanding the characteristics and limitations of any database 
is a fiduciary responsibility for researchers to ensure they are 
not promulgating “fake news.”
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population and in fact showed harm, presumably due to an 
unacceptably high severe hypoglycemic rate of 6.8% with the 
tight target versus 0.5% with a more liberal target. The adjusted 
hazard ratio (HR) for increased risk of death was 1.41 (1.21–1.62;  
p < 0.001) for moderate hypoglycemia (2.3–3.9 mmol/L) and 
2.10 (1.59–2.7; p < 0.001) if severe (< 2.2 mmol/L) (5). In the 
time since these landmark trials, it has become clear that we have 
many unresolved questions about glycemic control targets and 
the role of personalized therapies, but the days of ignoring exces-
sive BG levels or providing an ineffective sliding scale have ended.

However, sites that have used computerized programs to 
guide insulin dosing and remind the bedside caregivers to 
monitor BG have been more successful in maintaining glucose 
within the goal range with lower hypoglycemic rates (2, 6). 
Guidelines from the Society of Critical Care Medicine (SCCM) 
and the American Diabetes Association suggest that BG levels 
be maintained less than 10 mmol/L in critically ill patients, but 
specific patient populations may benefit from lower BG goals 
(< 8.3 mmol/L) if it can be done safely (7, 8).

Titrating insulin to a higher BG goal potentially reduces the 
risk of hypoglycemia. Unfortunately, a gold standard, safe level 
of hypoglycemia does not exist or even an optimal metric, but 
clinicians should always seek zero. The Centers for Medicare 
and Medicaid has proposed a requirement for hypoglycemia 
monitoring and reporting that has initial endorsement from 
the National Quality Forum and is open for comments from 
the public but has not yet been implemented (9).

Data analysis of acute ICU glycemic control is not adequate 
in isolation, as a link has been established between chronic 
glycemic control and outcomes with acute therapy. Observa-
tional data on critically ill patients suggest a difference in out-
come between patients with diabetes mellitus or poor chronic 
glycemic control, as indicated by glycosylated hemoglobin 
(HgbA1c) greater than 6.5–7.5 % and the intensity of glycemic 
control, compared with patients without diabetes—suggesting 
the need for personalized glycemic control (10). Preliminary 
data suggest that nondiabetics (labeled as critical illness as-
sociated hyperglycemia) may indeed benefit from maintain-
ing BG less than 8.3 mmol/L, whereas diabetic patients with 
poor chronic glycemic control may be harmed and should be 
treated with a protocol with a higher goal (11, 12). To test this 

*See also p. 1744.
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The road toward understanding optimal glycemic control 
in the ICU has been an uneven path. Two decades ago, 
there was initial enthusiasm for tight glycemic control 

defined as blood glucose (BG) 4.4–6.1 mmol/L (80–110 mg/dL) 
based on a trial in surgical ICU patients with remarkable mor-
tality reduction and some morbidity reduction (neuropathy, 
reduced transfusion, reduced infection, less acute renal failure) 
in part because the patients were administered concentrated dex-
trose and control patients who required insulin had mean morn-
ing glucose values of 4.1 ± 1.8 mmol/L (insulin therapy target 
10–11 mmol/L) (1). Subsequently, many hospitals launched 
protocols for insulin infusion therapy. Unfortunately, most of 
these were complex and led to inconsistent frequency of moni-
toring and excessive hypoglycemia rates, although newer ver-
sions have been improved (2). Hypoglycemia was recognized as 
a significant contributor to poor mortality, especially if severe 
(< 2.2 mmol/L), odds ratio (OR) 1.87 (95% CI, 1.46–2.4), but 
even moderate hypoglycemia (3.3–3.9 mmol/L) is a contributor 
to mortality OR 1.78 (95% CI, 1.39–2.27) (3). The Normogly-
cemia in Intensive Care Evaluation–Survival Using Glucose Al-
gorithm Regulation (NICE-SUGAR) multicenter, randomized 
trial use a computer-assisted protocol and compared insulin 
infusion to compare a BG goal 4.4–6.1 mmol/L with a more 
moderate goal of 7.8–11 mmol/L in patients receiving dex-
trose via enteral rather than IV nutrition (4). This study did not 
show a benefit of tight glycemic control in this heterogenous 


